Design and ASIC implementation of DUC/DDC for communication systems
نویسنده
چکیده
Communication systems use the concept of transmitting information using the electrical distribution network as a communication channel. To enable the transmission data signal modulated on a carrier signal is superimposed on the electrical wires. Typical power lines are designed to handle 50/60 Hz of AC power signal; however they can carry the signals up to 500 KHz frequency. This work aims to aid transmission/reception of an audio signal in the spectrum from 300 Hz to 4000 Hz using PLCC on a tunable carrier frequency in the spectrum from 200 KHz to 500 KHz. For digital amplitude modulation the sampling rate of the carrier and the audio signal has to be matched. Tunable carrier generation can be achieved with Direct Digital Synthesizers at a desired sampling rate. DSP Sample rate conversion techniques are very useful to make the sampling circuits to work on their own sampling rates which are fine for the data/modulated-carrier signal’s bandwidth. This also simplifies the complexity of the sampling circuits. Digital Up Conversion (DUC) and Digital Down Conversion (DDC) are DSP sample rate conversion techniques which refer to increasing and decreasing the sampling rate of a signal respectively. The objective was to design and implement low power ASIC of DUC and DDC designs at 65nm for PLCC. Low power implementation was carried out using Multi-VDD technique. MATLAB software models were used to understand the DUC and DDC designs. RTL to GDS flow was executed using Synopsys tools such as VCS, Design Compiler, IC Compiler and PrimeTime. Key milestones of this activity are RTL verification, synthesis, gate-level simulations, low power architecture definitions, physical implementation, ASIC signoff checks and postroute delay based simulations. Multi-VDD technique deployed on DUC and DDC helped to reduce the power consumption from 280.9uW to 198.07uW and from 176.26uW to 124.47uW respectively. DUC and DUC designs have met functionality at 64MHz clock frequency. Both the designs have passed postroute delay based simulations, static performance checks, power domain checks and TSMC’s 65nm design rule checks.
منابع مشابه
Efficient Implementation of Sample Rate Converter
Within wireless base station system design, manufacturers continue to seek ways to add value and performance while increasing differentiation. Transmit/receive functionality has become an area of focus as designers attempt to address the need to move data from very high frequency sample rates to chip processing rates. Digital Up Converter (DUC) and Digital Down Converter (DDC) are used as sampl...
متن کاملModular approach for an ASIC integration of electrical drive controls
VLSI circuits design allows today to consider new modes of implementation for electrical controls. However, design techniques require an adaptation effort that few designers, too accustomed to the software approach, provide. The authors of this article propose to develop a methodology to guide the electrical designers towards optimal performances of control algorithms implementation. Thus, they...
متن کاملDesign Analysis of Channel Filter for Digital Down Converter in WiMAX Application
A channel filter has been designed for Digital Down converter (DDC),that meets the standard of WiMAX in wireless communication. WiMAX is a technology emerging in the wireless communication system, in order to enhance the broadband wireless internet access. Digital Up Converter (DUC) and Digital Down Converter (DDC) are integral part of WiMAX system, that results in efficient low cost WiMAX syst...
متن کاملHigh Speed & High Frequency based Digital Up/Down Converter for WCDMA System
In this paper, I present FPGA implementation of a digital down converter (DDC) and digital up converter (DUC) for a single carrier WCDMA system. The DDC and DUC is complex in nature. The implementation of DDC is simple because it does not require mixers or filters. Xilinx System Generator and Xilinx ISE are used to develop the hardware circuit for the FPGA. Both the circuits are verified on the...
متن کاملDesign and Practical Implementation of a New Markov Model Predictive Controller for Variable Communication Packet Loss in Network Control Systems
The current paper investigates the influence of packet losses in network control systems (NCS’s) using the model predictive control (MPC) strategy. The study focuses on two main network packet losses due to sensor to controller and controller to actuator along the communication paths. A new Markov-based method is employed to recursively estimate the probability of time delay in controller to ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1201.2107 شماره
صفحات -
تاریخ انتشار 2011